Journal of Organometallic Chemistry, 321 (1987) 209-214 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ISOLIERUNG UND STRUKTUR EINES $C_{P_2}Ti^{IV}$ -KOMPLEXES MIT DEM DIANION DES BIS(ETHOXYTHIOPHOSPHORSÄURE)DISULFIDS ALS CHELATLIGAND: $C_{P_2}Ti(P_2S_4O_2(OEt)_2)$

ULF THEWALT*, SIMONE KLIMA,

Sektion für Röntgen- und Elektronenbeugung der Universität Ulm, Oberer Eselsberg, D-7900 Ulm (B.R.D.)

und HELMUT G. ALT

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstrasse 30, D-8580 Bayreuth (B.R.D.)

(Eingegangen den 19. September 1986)

Summary

Ethanolysis of P_4S_{10} in the presence of Cp_2TiCl_2 and some H_2O produces the red air-stable complex $Cp_2Ti(P_2S_4O_2(OEt)_2)$ (A) in which the dianion of bis(ethoxythiophosphoric acid)-disulfide acts as chelating ligand, bonded via two oxygen atoms to Ti. The molecular structure of A has been determined by X-ray diffraction. A crystallizes in the orthorhombic space group $Pca2_1$ with a 15.559(4), b 9.622(3), c 14.326(4) Å and Z = 4.

Zusammenfassung

Bei der Ethanolyse von P_4S_{10} in Anwesenheit von Cp_2TiCl_2 und wenig Wasser bildet sich der luftstabile rote Komplex $Cp_2Ti(P_2S_4O_2(OEt)_2)$ (A). Der über zwei O-Atome am Ti gebundene Chelatligand in A ist das Dianion des Bis(ethoxythiophosphorsäure)disulfids. Die Molekülstruktur von A wurde durch eine Röntgenstrukturanalyse bestimmt. A kristallisiert in der orthorhombischen Raumgruppe $Pca2_1$ mit a 15.559(4), b 9.622(3), c 14.326(4) Å und Z = 4.

Einführung

O,O'-Dialkyldithiophosphorsäuren des Typs $(RO)_2P(S)SH$ sind durch die Umsetzung von P_4S_{10} mit den Alkoholen ROH leicht zugänglich. In Abhängigkeit von den gewählten Reaktionsbedingungen wie Wassergehalt des Alkohols und der Temperatur können auch andere Phosphor-Schwefel-Verbindungen entstehen. Unter dem Einfluss von Oxidationsmitteln können sich aus den Dithiophosphorsäuren die entsprechenden Bis(O,O'-dialkylthiophosphoryl)disulfide, $(RO)_2P(S)SS(S)P$ - $(OR)_2$, bilden [1]. Wir berichten im folgenden über den Chelatkomplex $Cp_2Ti(P_2S_4O_2(OEt)_2)$ (A), der bei der Umsetzung von Cp_2TiCl_2 mit P_4S_{10} in wasserhaltigem Ethanol bei Zutritt von Luft entsteht.

Experimentelles und Strukturbestimmung

Darstellung

Zunächst lässt man 0.44 g P_4S_{10} (1 mmol) 30 min mit 30 ml siedendem, wasserhaltigem Ethanol reagieren. Dann gibt man 0.50 g Cp_2TiCl_2 (2 mmol) zu der Reaktionslösung und erhitzt noch 1 h. Der Rückflusskühler ist zur Atmosphäre hin offen. Nach dem Abkühlen wird das Lösungsmittel i. Vak. abgezogen. Der Rückstand wird in 15 ml CHCl₃ aufgenommen. Beim Eindunsten der filtrierten Lösung kristallisiert A aus; rote, luftstabile, isometrisch ausgebildete Kristalle. Umkristallisation aus Diethylether, Fp. 160–162°C. Ausbeute 0.31 g (32%).

Gef.: C, 34.63; H, 4.17. $C_{14}H_{20}O_4P_2S_4Ti$ (490.38) ber.: C, 34.29; H, 4.11%. Der für die höchste Masse im Massenspektrum auftretende Peak entspricht dem unzersetzten Molekül. A ist in CHCl₃, Aceton, Ether, Tetrahydrofuran und Benzol gut löslich.

IR (KBr; Interpretation der P–O- und P–S-Banden nach [2]): P–S, 535, 645; P–O, 960, 1015 und 1135; Cp, 828, 1025, 1115, 1440 und 3100 cm⁻¹. NMR-Spektren von Cp₂Ti(P₂S₄O₂(OEt)₂) wurden in Chloroform- d_1 bei 0°C aufgenommen.

Röntgenkristallographie

Die Röntgenmessungen erfolgten auf einem Philips-PW1100-Diffraktometer (Mo- K_{α} -Strahlung, λ 0.71069 Å; Graphitmonochromator; 21°C). Kristallabmessungen: 0.18, 0.30, 0.30 mm. Kristalldaten: orthorhombisch, Raumgruppe $Pca2_1$ (entsprechend den Auslöschungen: 0 k l fehlt für l = 2n + 1; h 0 l fehlt für h = 2n + 1; die andere hiermit konsistente Raumgruppe, Pcam, trifft, wie die weiteren Rechnungen zeigten, nicht zu). Gitterkonstanten aus den 2 θ -Werten von 11 Reflexen): a 15.559(4), b 9.622(3), c 14.326(4) Å; Z = 4; D(berechnet): 1.519 g cm⁻³; D(gemessen): 1.52 g cm⁻³. Intensitätsdaten: $\theta/2\theta$ -Betrieb; Messbereich: $4^{\circ} \leq 2\theta \leq 50^{\circ}$. 1977 unabhängige Reflexe erfasst. Lp-Korrektur, aber keine Absorptionskorrektur angebracht (μ 8.8 cm⁻¹). Die 1788 Reflexe mit $F_0 \geq 2\sigma F_0$ wurden zu den weiteren Rechnungen benutzt. Strukturbestimmung mit Hilfe des MULTAN-Programmes [3] und von ΔF -Synthesen. Die H-Atome wurden ignoriert. Die Verfeinerung der Atome mit anisotropen Temperaturparametern führte zu

Atom	x	у .	Z	U _{eq}
Ti(1)	0.1366(1)	0.4530(1)	0.5000(0)	0.043(1)
S(1)	0.0874(2)	0.8647(2)	0.5706(2)	0.068(1)
S(2)	0.1873(2)	0.8759(2)	0.4765(2)	0.069(1)
S(3)	-0.0950(2)	0.7187(3)	0.5922(3)	0.094(2)
S(4)	0.3659(2)	0.7283(3)	0.4316(3)	0.089(2)
P(1)	0.0004(1)	0.7258(2)	0.5076(2)	0.056(1)
P(2)	0.2739(1)	0.7222(2)	0.5214(2)	0.060(1)
0(1)	0.0485(3)	0.5932(5)	0.4842(5)	0.058(3)
0(2)	0.2242(3)	0.5907(5)	0.5365(4)	0.055(3)
O(3)	-0.0199(4)	0.7852(6)	0.4079(5)	0.072(4)
O(4)	0.2998(5)	0.7607(7)	0.6257(5)	0.082(4)
cà	-0.0666(8)	0.9150(11)	0.3975(10)	0.100(8)
C(2)	-0.0815(12)	0.9395(17)	0.3028(8)	0.149(14)
C(3)	0.3491(8)	0.8881(15)	0.6431(13)	0.123(11)
C(4)	0.3136(12)	0.9519(15)	0.7273(11)	0.141(13)
C(10)	0.1033(9)	0.4611(12)	0.6639(7)	0.086(8)
càn	0.1801(7)	0.3785(12)	0.6533(7)	0.076(6)
C(12)	0.1610(8)	0.2619(10)	0.6012(8)	0.081(7)
C(13)	0.0716(7)	0.2637(10)	0.5799(9)	0.077(6)
C(14)	0.0366(6)	0.3855(12)	0.6194(8)	0.079(6)
C(15)	0.1033(13)	0.4346(26)	0.3420(10)	0.132(14)
CIIÓ	0.1846(10)	0.4986(14)	0.3477(8)	0.098(9)
$\dot{C(17)}$	0.2376(7)	0.4017(11)	0.3841(7)	0.077(6)
C(18)	0.1939(9)	0.2822(11)	0.4022(8)	0.091(8)
C(19)	0.1058(11)	0.3009(19)	0.3756(11)	0.115(11)

ATOMPARAMETER VON Cp2Ti(P2S4O2(OEt)2)

TABELLE 1

R = 0.051 und $R_w(F) = 0.055$. Atomparameter s. Tabelle 1 [4]. Die benutzten Formfaktorwerte für Neutralatome stammen aus [5], die Korrekturwerte aus [6].

Ergebnisse und Diskussion

Die Bildung des Komplexliganden $P_2S_4O_2(OEt)_2^{2-}$ lässt sich durch die Gl. 1 bis 3 beschreiben. Die nach Gl. 1 gebildete O-Ethyl-Dithiophosphorsäure wird gemäss Gl. 2 durch Luftsauerstoff zum Bis(ethoxythiophosphorsäure)disulfid aufoxidiert. Diese Verbindung reagiert dann gemäss Gl. 3 mit dem Cp₂TiCl₂.

 $Cp_2TiCl_2 + P_2S_4(OH)_2(OEt)_2 \longrightarrow Cp_2Ti(P_2S_4O_2(OEt)_2) + 2HCl (3)$

Zu (1) und (2) analoge Reaktionen, die zu Alkoxyverbindungen des Typs S S I II

(RO)₂PSSP(OR)₂ führen, sind in grösserer Zahl bekannt [1].

Die Röntgenanalyse von A (s. unten) belegt, dass der Chelatligand über zwei O-Atome am Ti-Zentrum gebunden ist, analog dem Chelatligand der Thiophosphoryl-Verbindung B, deren Struktur kürzlich mitgeteilt wurde [7].

Das ¹H-NMR-Spektrum zeigt für die beiden Cp-Ringe ein Signal bei 6.77 ppm und für die beiden Ethylgruppen ein Multiplett bei 4.03 ppm sowie ein Triplett bei 1.32 ppm (³J(H,H) 7.1 Hz). Im ³¹P-entkoppelten ¹H-NMR-Spektrum vereinfacht sich das Multiplett in ein Signalmuster, das als ABM₃-Spinsystem interpretiert werden kann. Somit sind die beiden Wasserstoff-Substituenten einer OCH₂-Gruppe diastereotop, weil jedes P-Atom ein Chiralitätszentrum darstellt. Die beiden OEt-Gruppen sind aber magnetisch äquivalent. Im ¹³C-NMR-Spektrum erkennt man die beiden OEt-Substituenten an zwei Signalen bei 63.5 (¹J(C,H) 147.7 Hz) und 15.8

TABELLE 2

AUSGEWÄHLTE ABSTÄNDE (Å) UND WINKEL (°) FÜR Cp2Ti(P2S4O2(OEt)2) ^a

		.,	4 1 () 1)	
Ti-O(1)	1.936(5)	Ti-O(2)	1.970(5)	
Ti-Z(1)	2.068	Ti-Z(2)	2.023	
Ti-C(10)	2.41(1)	Ti-C(15)	2.33(2)	
Ti-C(11)	2.41(1)	Ti-C(16)	2.35(1)	
Ti-C(12)	2.37(1)	Ti-C(17)	2.34(1)	
Ti-C(13)	2.38(1)	Ti-C(18)	2.34(1)	
Ti-C(14)	2.40(1)	Ti-C(19)	2.36(2)	
P(1)-O(1)	1.516(5)	P(2)-O(2)	1.499(5)	
P(1)-O(3)	1.571(7)	P(2)-O(4)	1.591(8)	
P(1)-S(1)	2.105(3)	P(2)-S(2)	2.102(3)	
P(1) - S(3)	1.918(4)	P(2)-S(4)	1.926(4)	
O(3)-C(1)	1.45(1)	O(4)-C(3)	1.47(2)	
C(1)-C(2)	1.40(2)	C(3)-C(4)	1.46(3)	
S(1)-S(2)	2.061(4)			
O(1)-Ti-O(2)	93.0(2)	Z(1)-Ti-Z(2)	132.1	
Ti-O(1)-P(1)	155.4(4)	Ti-O(2)-P(2)	152.4(4)	
O(1) - P(1) - S(1)	108.2(2)	O(2) - P(2) - S(2)	107.8(2)	
O(3)-P(1)-S(3)	115.6(3)	O(4)-P(2)-S(4)	115.6(3)	
P(1)-S(1)-S(2)	103.7(2)	P(2)-S(2)-S(1)	104.3(1)	

^a Mit Z(1) und Z(2) sind die Zentren der C₅-Ringe bezeichnet, welche C(11) bzw. C(16) enthalten.

Fig. 1. ORTEP-Darstellung eines Cp₂Ti(P₂S₄O₂(OEt)₂)-Moleküls.

ppm (${}^{1}J(C,H)$ 128.2 Hz), die beide infolge der Kopplung mit dem Phosphor schwach aufgespalten sind (${}^{2}J(P,C)$ 3.7, ${}^{3}J(P,C)$ 9.8 Hz). Die beiden Cp-Liganden liefern ein einziges Signal bei δ 120.7 ppm (${}^{1}J(C,H)$ 178.2 Hz). Das ${}^{31}P$ -NMR-Spektrum zeigt nur ein einziges Signal bei δ 70.9 ppm (${}^{3}J(P,H)$ 9.8 Hz) und beweist zusammen mit den ${}^{13}C$ -NMR-spektroskopischen Befunden die C_{2} -Symmetrie des Moleküls. Die Tatsache, dass die beiden Cp-Liganden im ${}^{1}H$ - und ${}^{13}C$ -NMR-Spektrum jeweils nur ein einziges Signal ergeben, lässt den Schluss zu, dass der nicht eben gebaute Metallacyclus in Lösung rasch umklappt und dass daher für die beiden Cp-Ringe nur ein einziges, ausgemitteltes Signal registriert wird.

Ein einzelnes $Cp_2Ti(P_2S_4O_2(OEt)_2)$ -Molekül ist in Fig. 1 dargestellt. In der Elementarzelle nimmt es eine allgemeine Lage ein. Bindungsabstände und -winkel werden in Tabelle 2 aufgeführt. Bezüglich der Koordinationsgeometrie des Titanzentrums (Mittelwerte: Ti-O 1.95, Ti-Z 2.05 Å; O-Ti-O 93.0, Z-Ti-Z 132.1°) stimmt A in engen Grenzen mit anderen $Cp_2Ti(OR)_2$ -Verbindungen überein, beispielsweise Titanocendicarboxylaten [8]. Der siebengliedrige TiO_2P_2S_2-Ring ist stark gewellt, und zwar so, dass das Molekül näherungsweise C_2 -Symmetrie aufweist. Eine gleichartige Wellung wird auch für den TiO_2P_2S_2-Ring in dem verwandten Thiophosphorylkomplex (MeCp)_2Ti(P_2S_4O_2(C_6H_4OCH_3)_2) (B) [7] angetroffen.

Die Zahlwerte für die Abweichungen der Atome P(1), S(1), S(2) und P(2) von der jeweiligen O-Ti-O-Ebene belegen dies:

- A: 0.38, 0.75, -0.97, bzw. -0.55 Å
- **B**: 0.68, 0.88, -0.92, bzw. -0.52 Å.

Wie die folgende Zusammenstellung zeigt, stimmen auch die P-O-, P-S-, P=Sund S-S-Abstände von A recht gut mit den entsprechenden Abständen in den vergleichbaren Verbindungen B und C [9] überein (Angaben in Å):

	P –OTi	P-OR	P–S	P=S	S-S
A	1.516(5)	1.571(7)	2.105(3)	1.918(4)	2.061(4)
	1.499(5)	1.591(8)	2.102(3)	1.926(4)	
В	1.531(2)	_	2.108(1)	1.944(1)	2.070(1)
	1.539(2)		2.119(1)	1.950(1)	
С	-	1.557(4)	2.072(2)	1.908(3)	2.109(4)
		1.564(4)			

Während der P-S-S-P-Torsionswinkel im offenkettigen C 0° ist, beträgt er für die Ringverbindungen A und B etwa 90° (A: 92.3, B: 94.8°).

Zwischen benachbarten Molekülen im Kristall treten keine bemerkenswert enge Kontakte auf.

Dank

Wir danken dem Land Baden-Württemberg für die Förderung dieser Untersuchung im Rahmen des Schwerpunktprogrammes "Strukturforschung" sowie dem Fonds der Chemischen Industrie für eine Sachbeihilfe.

Literatur

- 1 Zusammenfassende Übersichten: H. Hoffman und M. Becke-Goehring, Topics in Phosphorous Chemistry, 8 (1976) 193; J.R. Wasson, G.M. Woltermann und H.J. Stoklosa, Fortschr. Chem. Forsch., 35 (1973) 65.
- 2 C.L. Thomas und R.A. Chittenden, Spectrochim. Acta, A26 (1970) 781.
- 3 MULTAN Programm; J.P. Declercq, G. Germain, P. Main und M.M. Woolfson, Acta Cryst., A, 29 (1973) 231.
- 4 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie-Physik-Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52102, angefordert werden.
- 5 D.T. Cromer und J.B. Mann, Acta Cryst., A, 24 (1968) 321.
- 6 D.T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1891.
- 7 G.A. Zank und T.B. Rauchfuss, Inorg. Chem., 25 (1986) 1431.
- 8 Zusammenstellung entsprechender Daten vergl. H.-P. Klein, K. Döppert und U. Thewalt, J. Organomet. Chem., 280 (1985) 203.
- 9 S.L. Lawton, Inorg. Chem., 9 (1970) 2269.